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Ongoing and breakthrough pain is a primary concern for the cancer patient. Although the etiology 

of cancer pain remains unclear, animal models of cancer pain have allowed investigators to 

unravel some of the cancer-induced neuropathologic processes that occur in the region of 

tumor growth and in the dorsal horn of the spinal cord. Within the cancer microenvironment, cancer and 

immune cells produce and secrete mediators that activate and sensitize primary afferent nociceptors. 

Pursuant to these peripheral changes, nociceptive secondary neurons in spinal cord exhibit increased 

spontaneous activity and enhanced responsiveness to three modes of noxious stimulation: heat, cold, 

and mechanical stimuli. As our understanding of the peripheral and central mechanisms that underlie 

cancer pain improves, targeted analgesics for the cancer patient will likely follow. 
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ent with breast pain; if a breast lump is not noticed by the patient 
or provider, the initial symptom will likely be pain on movement 
secondary to metastasis to the skeleton. By contrast, the oral can-
cer patient would likely have pain during oral function at the very 
earliest stages of cancer. Furthermore, for the same histologic type 
of cancer, the symptoms depend on the site of presentation. A 
patient with squamous cell carcinoma of the lung rarely presents 
with pain, whereas the patient with squamous cell carcinoma of 
the oral cavity will almost certainly present with pain as the initial 
symptom. Thus, animal model studies of cancer pain will ideally 
be relevant to the histochemical and locational characteristics that 
have been well-established in the clinical setting. Indeed, Sabino 
and colleagues have achieved such relevance in an animal model. 
Specifically, injections of sarcoma, melanoma, or colon adenocar-
cinoma cells into the distal femur of immunocompromised mice 
result in varying degrees of bone destruction, central sensitization 
(as indicated by cFos immunoreactivity and dynorphin expression 
in the spinal cord), and behavioral indications of pain (3). In this 
animal model, variation in pain characteristics thus relate to the 
type of cancer. 

Nociceptive Mediators and Modulators

Our review of cancer microenvironmental factors will be confined 
to those mediators for which there is direct evidence of nocicep-
tive activity. We will not discuss mediators that have been impli-
cated solely on the basis of drug administration [e.g., a COX-2 
inhibitor (4)] or techniques directed outside the cancer microen-
vironment [e.g., downregulation of Toll-like receptor intrathecally 
(5)]. We also omit from review several nociceptive mediators that 
are secreted in high levels by certain cancers, including glutamate, 
cytokines, growth factors, and nitric oxide, because published data 
do not show that peripheral antagonism of these mediators attenu-
ates cancer-induced nociception. The mediators under review here 
will be endothelin, protons, proteases, bradykinin, nerve growth 
factor, and tumor necrosis factor (Figure 1). Endogenous modula-
tors that reverse cancer-induced nociception are also discussed, 
including cannabinoid receptor agonists.

Endothelin-1: A Dual Role in  
Cancer-Induced Nociception

The effects of endothelin-1 (ET-1) on cancer pain are unexpectedly 
complex. The key to understanding these effects is the activity of 
two endothelin receptor subtypes that differentially affect opioid 
release from carcinomas. ET-1 is a potent vasoactive peptide that 
produces nociceptive behavior in animals and humans (6–8) and 
drives cancer pain (9). Although ET-1 is produced by multiple can-
cers, it is not produced by all malignancies (10). 

ET-1 binds to two G protein–coupled receptors, the endothe-
lin-A receptor (ET

A
R) and the endothelin-B receptor (ET

B
R).  

ET
A
Rs are distributed on peripheral sensory neurons; ET

B
Rs are 

Introduction

Over half of all cancer patients will experience severe, uncontrol-
lable pain during the course of their disease, and the management 
of pain is a primary challenge for the cancer patient and the treat-
ing oncologist (1). Although cancer pain is a complex pathologic 
process and a formidable clinical problem, significant headway has 
been made in understanding the basic neurologic mechanisms that 
are responsible for generating cancer pain. The symptoms experi-
enced by the cancer patient are a consequence of cellular, tissue, 
and systemic changes that occur during proliferation, invasion, 
and metastasis. The responding immune system also has a clear 
role in cancer pain. The cancer cell produces mediators that affect 
other cells within the cancer microenvironment, such as immune 
cells. Nociception almost certainly involves dynamic interactions 
and crosstalk between the cancer and the primary afferent nocice-
ptor. Therefore, it is difficult to isolate one cell and study it in  
isolation. The investigator must consider the activities of the 
cancer cell, the peripheral and central nervous system, and the 
immune system.

In the first part of this review, we discuss the relationship 
between the cancer cell and the primary afferent nociceptors with-
in the cancer microenvironment. We focus on the mediators that 
are liberated by the cancer and sensitize the nociceptors; endog-
enous antinociceptive mechanisms in the setting of cancer are also 
reviewed. Other cells, particularly immune cells, near the cancer 
microenvironment will also be considered in the context of pain 
experienced by the patient and the level of nociception measured 
in the animal model. 

The second half of this review discusses significant neu-
rochemical changes in both the peripheral and central nervous 
system (CNS) in cancer pain. Electrophysiological and immuno-
histochemical studies have revealed signs of peripheral neuropathy 
as well as peripheral and central sensitization after tumor implan-
tation in or around the limb bones of rodents. Tumor-related 
signs in rodent models mimic similar changes seen clinically, thus 
validating the models and shedding light on the mechanisms of 
cancer-evoked pain. Recent and thorough coverage of the broad 
range of animal models of cancer pain can be found elsewhere (2) 
and will be addressed here only briefly. Our focus will rather con-
cern peripheral neuropathic changes and central sensitization that 
develop due to the influence of tumors on neurons.

Origins of Cancer Pain  
in the Microenvironment

The clinical presentation of cancer pain depends on three features: 
1) the histologic type of the cancer; 2) the location of the primary 
neoplasm; and 3) location of metastases. A patient with meta-
static breast cancer to the spine will develop clinical symptoms 
very different from the patient who develops oral cancer on the 
tongue. The breast cancer patient will almost certainly not pres-
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expressed on nonmyelinating Schwann cells of the sciatic nerve 
and dorsal root ganglion satellite cells (11, 12) as well as on kera-
tinocytes, which are known to secrete opioids (13–15). The ET

A
R 

primarily mediates vaso- and bronchoconstriction, mitogenesis, 
antiapoptosis, and acute pain. ET

A
R antagonists inhibit osteoblast 

proliferation and bone metastases proliferation (16–18). The ET
B
R 

mediates inflammatory pain and vasodilatation (19, 20).

ET-1 and ET
A
R Antagonism in Bone Cancer Pain Models

Initial confirmation of the role of ET-1 in cancer pain was pre-
sented in two companion reports in 2001 (21, 22). Wacnik and 
colleagues used a fibrosarcoma bone cancer pain mouse model by 
implanting fibrosarcoma cells either into the calcaneous bone or 
subcutaneously adjacent to bone (22). Increased ET-1 levels were 

characteristic of the whole tumors that developed in these mice, 
which manifested hyperalgesia. When ET-1 was injected directly 
into the tumor, moreover, a local nociceptive effect was observed. 
Although this study did not definitively assign pain behaviors as 
the direct effect of ET-1 alone within the cancer microenviron-
ment, the authors were able to use ET-1 injection and antagonism 
to conclude that ET-1 contributes to tumor-induced nociception. 

Cain and colleagues used a similar sarcoma model and dem-
onstrated sensitization through behavioral as well as electrophysio-
logic analysis (21). Hyperalgesia, indicated by ipsilateral paw with-
drawal from mechanical stimuli, was again in this study associated 
with the resulting tumors; specifically, spontaneous activity in C 
fibers increased with sarcoma progression. The response threshold 
to heat in the C fibers, but not in Aβ- or Aδ-fibers, of the mice 
with cancer was significantly lowered. The lack of spontaneous 

Figure 1. The key cellular components within the cancer microenvironment include the cancer cells, primary afferent nociceptors, and immune cells 
(e.g., mast cells). Cells comprising the cancer produce and secrete mediators into the cancer microenvironment that modulate nociception. Such mediators 
include: protons, ET-1, TNFα, NGF, trypsin, and opioids. The cancer can indirectly increase nociceptive mediators such as bradykinin (BK) or tryptase. BK pro-
duction is increased by the secretion of kallikrein by the cancer cell. Tryptase is released through stimulation of mast cells by the cancer. Certain mediators, 
such as ET-1 can activate receptors both on the cancer cell (ETBR) and the primary afferent nociceptors (ETAR). The various mediators stimulate the associated 
receptors on primary afferent nociceptors to produce both nociception and antinociception. (See text for details and references. Blue arrow indicates secretion. 
Green arrow indicates activation. Red arrow indicates sensitization.)
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activity in the Aδ-fibers in the sarcoma mouse model contrasts 
with other work that suggested that subcutaneous injection of 
ET-1 into the plantar hindpaw excites both C and Aδ-fibers (23).

Intriguingly, the two ET-1 receptor subtypes may medi-
ate opposite effects in models of bone cancer pain. Whereas 
acute and chronic systemic administration of an ET

A
R antagonist 

reduces both ongoing and mechanically evoked pain behavior in 
a metastatic sarcoma model, an opposite effect is found with ET

B
R 

antagonism, which increases pain behavior (12). This duality was 
similarly reflected in the fibrosarcoma bone cancer pain model 
discussed above, where injection of an ET

A
R antagonist directly 

into the tumor reduced mechanical hyperalgesia, whereas systemic 
administration of the ET

A
R antagonist with simultaneous tumor 

injection of an ET
B
R antagonist had no effect on the pain behavior 

(22). This abrogation of the antinociceptive effect of ET
A
R antago-

nism by ET
B
R antagonism has been elaborated and elucidated 

through the work of Khodorova and coworkers (24) and Quang 
and Schmidt (25), as described below. 

ET
A
R Antagonism in Soft Tissue Models of Cancer Pain

Using a mouse model that was produced by injecting prostate car-
cinoma cells into the hindpaw, mechanical hyperalgesia was linked 
to ET-1 also in soft tissue cancer pain (26). The mechanical hyper-
algesia induced by ET-1 could be reversed with oral administration 
of an ET

A
R antagonist (26). Another group, also using the hindpaw 

cancer pain mouse model, subsequently showed that endogenous 
ET-1 is responsible for cancer-induced nociception (27). 

Patients with oral squamous cell carcinoma (SCC), which 
secretes extremely high levels of ET-1 into the cancer microenviron-
ment (10, 27), report severe functional pain following mechanical 
stimulation (28, 29). To parallel the mechanical hyperalgesia that 
is observed in human oral cancer patients, Schmidt and colleagues 
produced a mouse model of cancer pain by inoculating human oral 
tongue SCC into the mouse hindpaw. The authors demonstrated 
that an ET

A
R antagonist injected directly into the cancer microenvi-

ronment produced antinociception similar to that elicited by acutely 
administered, high-dose, systemic morphine (27). In fact, ET-1 con-
centration proved to be a more important factor than tumor volume 
in establishing cancer pain (10). Mice that had been inoculated with 
melanoma, rather than SCC cells, developed significantly larger can-
cers but also manifested a higher pain threshold, at all time points, 
compared to the SCC group of mice 

ET
A
R Antagonists in Clinical Trials

In clinical trials, however, the antinociceptive effect of ET
A
R 

antagonists did not hold up. Atrasentan, an orally available ET
A
R 

antagonist, has been studied extensively in clinical trials for effi-
cacy in controlling the clinical progression of prostate carcinoma; 
pain was used as an outcome measure in these studies. Despite the 

encouraging results of preclinical data, Atrasentan was not shown 
to significantly reduce cancer pain in clinical trials: among three 
patient cohorts (placebo, 2.5 mg Atrasentan, 10 mg Atrasentan), 
no difference was reported in pain (i.e., requirement for opioid 
treatment) (30). One study demonstrated a trend of pain improve-
ment in a small subset (5 of 15) of patients, but the effect was not 
significant (31). Most recently, a phase III trial using Atrasentan 
in 811 men with prostate cancer failed to show that the selective 
ET

A
R antagonist significantly reduced pain (32). 

ET
B
R and Opioid Release 

The negative clinical trials with the ET
A
R antagonist indicated that 

our understanding of the role of ET-1 in cancer pain was far from 
complete, and the ET

B
R became central to solving this puzzle. The 

ET
B
R had not been as closely studied as the ET

A
R because the data 

had been perplexing. For example, upregulation of ET
B
 receptors 

in cancer cells had been observed in melanoma, breast cancer, and 
ovarian cancer (33, 34). On the other hand, ET

B
R downregulation 

was observed in prostate, bladder, and colorectal cancer (35, 36). 
ET

B
R antagonism hindered tumor proliferation in some cases (20, 

37), whereas other studies showed conflicting effects on expres-
sion. In non-cancerous pain, ET

B
R mediates both nociceptive and 

antinociceptive effects of ET-1 (38, 39). ET
B
R activation was shown 

to produce an antinociceptive effect in the context of high ET-1 
concentration or in the local setting of inflammation (24, 40–42). 
For example, ET-1 at 10 pmol maximally enhances hyperalgesia 
following injection of capsaicin into the hindpaw; hyperalgesic 
enhancement is attenuated at higher doses of ET-1 and is absent at 
30 pmol. In addition, preinjection of the ET

B
R antagonist BQ-788 

produces significant hyperalgesia (41), which suggests that the 
high doses of ET-1 elicit an antinociceptive effect through the 
ET

B
R. Further, direct evidence comes from experiments that show 

that ET
B
R agonists can completely abrogate ET

A
R-mediated noci-

ception (41). Electrophysiologic experiments also support the anti-
nociceptive effect of ET

B
R agonism. ET-1 that is applied to cutane-

ous nerve endings produces action potentials that can be strongly 
suppressed with ET

B
R agonists and ET

A
R antagonists (6, 24). 

Most notable is the recent finding that links production of 
β-endorphin with ET

B
R activation (43). Specifically, Quang and 

Schmidt examined mRNA in the SCC cancer pain model and 
showed that ET-1 expression was nearly doubled, whereas ET

B
R 

expression was significantly downregulated in the human oral 
SCC cell line (compared to normal oral keratinocytes, the non-
malignant counterpart to oral SCC). In the mouse model, the 
intratumor administration of an ET

B
R agonist attenuated cancer 

pain by approximately 50% up to 3 hours post-injection, whereas 
injection of an ET

B
R antagonist had no effect. Intriguingly, local 

naloxone methiodide or injection of selective µ-opioid receptor 
antagonist (CTOP) reversed ET

B
R agonist-induced antinociception 

in cancer animals. 
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A body of circumstantial evidence strongly supports the 
proposal that peripheral ET

B
R agonism attenuates carcinoma pain 

by modulating β-endorphins released from the carcinoma to act 
on peripheral opioid receptors found in the cancer microenvi-
ronment. Oral squamous cell carcinoma consists of malignant 
keratinocytes that bear ET

B
 receptors and secrete opioids (13–15) 

to modulate the activity of the surrounding primary afferent noci-
ceptors in skin (44, 45). In addition, ET-1 activation of ET

B
Rs on 

keratinocytes leads to analgesia that is reversed with naloxone, 
implicating the keratinocytes as a source of opioid released upon 
ET

B
R activation (8, 24). Consequently, the oral cancer mouse 

model provides intriguing evidence for the potential analgesic role 
of ET

B
R activation in carcinomas (25). 

ET
A
R and Opioid Release 

Surprisingly, in parallel with the role of ET
B
R activation, increased 

production of β-endorphin and increased secretion of leu-enkeph-
alin occurs in SCC cell culture treated with ET

A
R antagonist (25). 

In the animal model, significant mechanical nociception begins 
at four days after inoculation of SCC cells and lasts up to eigh-
teen days. Local administration of either naloxone methiodide or 
selective opioid receptor antagonists (i.e., the µ-opioid receptor 
antagonist CTOP or the δ-opioid receptor naltrindole, but not the 
κ-opioid receptor nor-BOR) significantly blocks the antinocicep-
tive effect of the ET

A
R antagonist. 

These results demonstrate that ET
B
R agonism as well as ET

A
R 

antagonism can elicit antinociception through the release of  
opioid peptides in the cancer microenvironment. Cancers other 
than oral SCC have also been shown to produce opioids [e.g., 
malignant melanoma, benign melanocytic naevi (46), small cell 
lung carcinoma (47), and ovarian tumors (48)] and so modulation 
by ET-1 receptor ligands could extend beyond the SCC model. 
Epidermoid carcinoma cells and human foreskin keratinocytes 
produce proopiomelanocortin (POMC), the precursor for melano-
tropic, corticotropic, and opioid peptides (49). Opioids secreted 
by these non-neuronal cells have potentially similar functions as 
peptides of neural origin. β-endorphins derived from leukocytes 
can enhance inhibition of inflammatory pain in both humans and 
animals (50, 51). 

The finding that ET
A
R antagonism leads to opioid secretion 

and antinociception in the cancer pain mouse model is unex-
pected, as the generally accepted hypothesis was that antagonism 
of ET

A
Rs present on primary afferent nociceptors elevated the 

firing threshold (24). In light of the provocative indications of a 
functional relationship between ET

A
R and ET

B
R in the model pre-

sented above, data concerning physical associations between ET
A
R 

and ET
B
R are especially intriguing. Specifically, the two receptor 

subtypes appear capable of forming homo- and heterodimers via 
coupled binding to the bivalent ET-1 ligand (52). In this way, an 
ET

A
R antagonist could disrupt heterodimeric receptor associations, 

liberating ET
B
R, which binds to ET-1 with a ninefold increase in 

affinity (52). Dissociated ET
B
Rs in oral carcinoma cells treated with 

an ET
A
R antagonist might thus be more readily activated by ET-1, 

which is produced in abundance by carcinoma cells, leading to 
opioid secretion in the cancer microenvironment. 

Modulation of ET-1 receptors in the management of cancer 
pain might have additional benefits, including the control of mor-
phine tolerance. Most types of cancer pain are at least initially 
responsive to opiates such as morphine, but as tolerance rapidly 
develops, escalating doses are required, leading to a higher inci-
dence of side effects. ET

A
R antagonism has been shown to prevent 

morphine tolerance (53–56). Theoretically, the combination of 
ET

A
R antagonism, which produces antinociception and simulta-

neously prevents morphine tolerance, and ET
B
R agonism, which 

leads to local opioid release, might hold promise for the treatment 
of cancer pain. 

Protons and Acid-Sensing Receptors  
(TRVP1 and ASIC)

A low pH is the hallmark of the cancer microenvironment,  
reflecting elevated metabolic rates and anaerobic conditions that 
occur with carcinogenesis. An acidic pH not only activates certain 
channels, but also sensitizes primary afferent nociceptors, thereby 
contributing to metastatic cancer pain, one of the most common 
complications in patients with bone metastases. In this setting, an 
acidic environment is produced by osteoclasts, which are activated 
by growth factors secreted by cancer cells, culminating in osteoly-
sis. Acidosis is a well-established cause of pain, and the generation 
of an acidic microenvironment adjacent to the richly innervated 
periosteum is a likely mechanism associated with pain in meta-
static bone cancer. 

A likely nociceptive mechanism for protons in cancer pain is 
the direct activation of the transient receptor potential vanilloid-1 
(TRPV1) channel. TRPV1 is a Ca2+-permeable ionotropic receptor 
activated by multiple sensory stimuli including heat, acid, and 
protons. Antagonism of the TRPV1 channel attenuates nocicep-
tion in a mouse bone cancer pain model, and TRPV1 is present on 
sensory neuron fibers that innervate the afflicted bone. Acute or 
chronic administration of a TRPV1 antagonist or genetic disrup-
tion of the TRPV1 gene results in a significant attenuation of both 
ongoing and movement-evoked nociceptive behaviors (57). 

The antinociceptive effect of TRPV1 antagonism in a soft  
tissue cancer model has been demonstrated by injection of SCC 
into the rat hindpaw (58). The carcinoma that developed within 
the hindpaw induced significant mechanical allodynia, thermal 
hyperalgesia, and spontaneous nociceptive behavior, which could 
be partially ameliorated by morphine. Immunohistochemical 
analysis showed an increase in the number of TRPV1-positive, 
large-sized neurons within the dorsal root ganglia. Intraplantar 
administration of the TRPV1 antagonist capsazepine or the TRP 
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channel antagonist ruthenium red completely inhibited mechani-
cal allodynia and thermal hyperalgesia but did not inhibit sponta-
neous nociceptive behavior (58). 

In bone cancer, the acid microenvironment produces altered 
expression of acid-sensing ion channels (ASICs), but not of TRPV1 
receptors. In a cancer model produced by inoculating MRMT-1 
rat breast cancer cells into the tibia of female rats, osteolysis with 
an abundance of osteoclasts could be detected histologically, and 
radiographs confirmed bone destruction. c-Fos expression was 
increased in the spinal cord ipsilateral to site of cancer cell injec-
tion, and rats displayed hyperalgesia in the afflicted legs. The 
bisphosphonate zoledronic acid, which inhibits osteoclast activity, 
significantly reduced the hyperalgesia and decreased the presence 
of c-Fos-positive neurons. Expression levels of two ASIC subtypes, 
ASIC1a and ASIC1b, were increased at the mRNA level in ipsilat-
eral dorsal root ganglions, which could be decreased by treatment 
with zoledronic acid. ASIC3 and TRPV1 mRNA expression levels, 
on the other hand, were not elevated in this model (59). 

Proteases and Protease-Activated Receptors

Proteolytic activity is critical to carcinogenesis and cancer pain, 
and the cancer microenvironment is replete with both proteases 
and proteolytic peptide products (60–62). Cancer-associated 
trypsin has been identified in cancers such as ovarian carcinoma, 
pancreatic cancer, hepatocellular and cholangiocarcinomas, lung 
neoplasms, colorectal cancers, fibrosarcoma, erythroleukemia, 
gastric cancer, and oral cancer (63). Proteases activate cell sur-
face receptors on primary afferent nociceptors within the cancer 
microenvironment, either directly or via their peptide products. 

Protease activated receptors (PARs) belong to a family of G 
protein–coupled receptors (PAR

1
 to PAR

4
) that are activated by 

proteolytic cleavage. Such cleavage can result from a number 
of different enzymes, including serine proteases, trypsin, and 
tryptase. Cleavage exposes a tethered ligand that binds the  
receptor and initiates signal transduction (64). PARs can also be 
activated by short synthetic penta- or hexapeptides that have a 
sequence similar to the tethered ligand. The peptide sequence 
SLIGRL activates PAR

2
 on nociceptors and produces nociception 

(65, 66), which induces the release of substance P and calcitonin 
gene related protein (CGRP) from C-fibers in peripheral tissues 
(67). PAR

2
 activates multiple second messenger pathways, which 

sensitize TRPV1 and TRPV4 receptors on nociceptive afferents 
and result in TRPV1-dependent thermal and TRPV4-dependent 
mechanical hyperalgesia, respectively (68, 69). 

Serine Proteases and PAR2-Dependent Allodynia

PAR2 has recently been implicated in cancer pain by using phar-
macologic, behavioral, biochemical, and genetic approaches (70). 
Proteases capable of activating PAR2 on sensory neurons are recov-

ered in the supernatants of human cancer cells, and human head 
and neck carcinoma cells manifest increased proteolytic activity. 
Supernatants from human carcinoma cells can also cause marked 
and prolonged mechanical allodynia in mice. It is important to 
note that the injection of supernatant alone, without growth of 
cancer, induces mechanical allodynia in mice. This nociceptive 
effect is abolished by serine protease inhibition, diminished by 
mast cell depletion, and absent in PAR2 knockout mice. The 
induction of mechanical allodynia by the human carcinoma super-
natant is also attenuated by mast cell granule depletion; serine 
proteases, such as trypsin from cancer cells and tryptase from 
mast cells, both of which can activate PAR2, contribute to cancer 
pain. Epithelial cells are likely a secondary source of trypsin (71). 
Blood vessels surrounding cancers such as gastric carcinoma (72) 
express trypsin, as do fibroblasts in the surrounding stroma of oral 
carcinoma (63), and elevated serum trypsin levels have been found 
in gastric carcinoma patients (73). Chronic exposure to serine 
proteases secreted by human cancer upregulates PAR2 levels in 
peripheral neurons (70). The continual release of serine proteases 
from cancer and non-malignant cells in the microenvironment 
could produce ongoing excitation of primary nociceptive afferents 
leading to mechanical allodynia in cancer patients. 

Bradykinin

Like endothelin-1, bradykinin (BK) is a vasoactive peptide that 
plays a role in cancer pain. Certain cancers, such as prostate, 
secrete kallikrein, which increases the concentration of BK in the 
cancer microenvironment (74). In a mouse model of bone cancer 
pain, created by inoculating osteolytic sarcoma cells into the distal 
femur (75), chronic pharmacologic antagonist blockade (between 
day 6 and 14 following sarcoma inoculation) of the bradykinin 
B

1
 receptor reduced ongoing and movement-evoked bone cancer 

pain behaviors at both early (10 days post sarcoma inoculation) 
and advanced stages (14 days post sarcoma inoculation) of bone 
cancer. The authors demonstrated that chronic administration of 
B

1
 antagonist did not affect either tumor proliferation or osteolysis, 

thereby demonstrating that the B
1 
antagonist likely has a pure anti-

nociceptive effect. This latter determination is important because 
identification of BK antagonists in antinociceptive mechanisms can 
be complicated by possible effects on cancer proliferation,

Effects of BK-targeting drugs on pain behavior can differ, 
depending on cancer histology and site as well as the schedule of 
drug administration (76). In a skin cancer pain model produced 
by inoculating melanoma cells into the hindpaw of mice, paw 
licking in advanced stages of progression, an index of spontaneous 
nociception, was significantly inhibited by local injection of BK 
receptor antagonists (specific for either the B

1
 or B

2
 receptor sub-

type) on day 20 after melanoma inoculation. Mechanical allodynia, 
on the other hand, was not affected by the B

1
receptor antagonist, 

whereas the B
2 
receptor antagonist produced a dose-dependent 



170

Review

inhibition of mechanical allodynia. Neither of the BK receptor 
antagonists affected thermal hyperalgesia. 

B
1 
receptors were upregulated in the cancer microenviron-

ment of the skin cancer model. Based on RT-PCR, B
1
 receptor 

mRNA was abundant in dorsal root ganglia ipsilateral to inocula-
tion on day 20, but it was very weakly detected on the non-inoc-
ulated side; B

2
 receptor mRNA (detected in the dorsal root ganglia 

on the non-inoculated side) was not altered by inoculation of mel-
anoma cells. The content of BK and related peptides was increased 
in the melanoma mass as compared with healthy skin. 

Bradykinin Directly Regulates Endothelin-1

Bradykinin studies also add a twist to the complex story of 
endothelin-1 pain mediation: BK directly induces increased 
expression and secretion of ET-1 (77). Treatment of cultured mela-
noma cells with BK increases cellular preproET-1 mRNA levels 
as well as the secretion of ET-1; the secretion and biosynthesis of 
ET-1 is regulated through the B

2
 but not the B

1
, receptor in this 

specific melanoma cell line. The effects on ET-1 may not be the 
same in all melanoma cell lines (20). 

Nerve Growth Factor

In the microenvironment of many cancers, sensory neurons are 
exposed to a chronic increase in nerve growth factor (NGF), which 
is normally secreted to promote the local growth and survival of 
afferent sensory neurons. Signals from NGF are mediated via a 
high-affinity receptor tyrosine kinase (TrkA) and a low-affinity 
p75 receptor on the neuronal membrane (78). NGF and its high-
affinity TrkA receptor can also facilitate proliferation and invasion 
of multiple cancers, including breast, prostate, and pancreatic 
cancers (79–84). Expression of NGF and regulation of both high- 
and low-affinity receptors have also been extensively investigated 
(85–94). Acute peripheral administration of NGF leads to thermal 
hyperalgesia (95, 96), whereas chronic administration produces 
mechanical hyperalgesia (95). Similarly, a transgenic mouse engi-
neered to overexpress NGF exhibits mechanical hypersensitivity 
(97). Increases in NGF associated with inflammatory and painful 
conditions occur in keratinocytes in psoriasis (98), synovial fluid 
in inflammatory joint disease (99), and intestinal tissue in inflam-
matory bowel disease (100).

Indirect Effects of NGF on Cancer Pain  
and Implications for Anti-NGF Therapy

NGF also modulates the activity of inflammatory cells, including 
lymphocytes and mast cells (101, 102); the depletion of mast cells 
can abrogate nociceptive effects of NGF on small-diameter neurons 
in a skin-nerve preparation (103). Inflammatory activities can be 
associated with an increase in NGF, an increase in peptide content 
in sensory neurons, an increase in substance P and CGRP release 

from the spinal cord, and an increase in hyperalgesia (104–108). 
NGF secretion by cancer cells into the microenvironment likely 
leads to a number of changes that contribute to pain. Chronic 
NGF exposure leads to an increase in the expression of TRPV1 
receptors in sensory neurons (109) and increases ASIC expression 
and bradykinin receptor binding, both of which contribute to  
cancer pain (110–114). 

One possible mechanism of NGF-induced cancer pain is its 
association with “perineural involvement,” a pathologic term for 
the invasion and proliferation of a cancer within a nerve, associ-
ated with pain and recurrence following surgical resection. NGF is 
associated with perineural invasion in adenoid cystic carcinoma, a 
salivary gland malignancy known for its neurotropism, as well as 
pancreatic and oral cancer (84, 94, 115, 116). NGF expression is 
increased in the cytoplasm of pancreatic cancer cells, whereas  
TrkA is strongly detected in the perineurium of pancreatic nerves 
but not in the cancer cells. Pancreatic cancers with high NGF and 
TrkA expression levels exhibit more frequent perineural invasion 
and higher levels of reported pain. Both NGF and TrkA protein lev-
els are also significantly higher in oral cancers manifesting perineu-
ral invasion (94). Anti-NGF can mimic morphine in a mouse 
model, created through injection of prostate cancer cells into the 
femur (117), to reduce both early and late stage bone cancer noci-
ceptive behavior. Although NGF clearly has a proliferative effect in 
cancers, anti-NGF treatment can promote antinociception without 
influencing tumor-induced bone remodeling, osteoblast prolifera-
tion, osteoclastogenesis, tumor growth, or markers of sensory or 
sympathetic innervation in the skin or bone (117). These results 
have been taken to indicate that anti-NGF therapy in relieving 
prostate cancer–induced bone nociception occurs from interference 
of NGF-mediated sensitization through TrkA and p75 receptors, 
which are expressed on all nerve fibers that innervate bone. 

Tumor Necrosis Factor

Cytokines remain provocative nociceptive candidates because they 
are produced at high levels in cancer; nociceptive effects of cytok-
ines could be either directly neuronal or immunological. Tumor 
necrosis factor-α (TNFα) stimulates immune cells, which have the 
potential to produce nociceptive agents that interact with primary 
afferent nociceptors in the cancer microenvironment (118). A 
direct, local role for TNFα in cancer-induced mechanical hype-
ralgesia has been demonstrated in mice inoculated with mouse 
fibrosarcoma cells (119). Significantly higher levels of TNFα in this 
model are detected within tumors, and intraplantar injection of 
TNFα induces mechanical hypersensitivity (in the fibrosarcoma-
established mice as well as in naïve mice). Local production of 
TNFα likely contributes to tumor-induced nociception, as intra-
tumor injection of etanercept, a soluble TNFα receptor, was effec-
tive in reducing tumor-induced mechanical hyperalgesia, whereas 
systemic etanercept was ineffective.
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Similarly, Constantin and colleagues used an elegant two-
pronged approach to show that TNFα directly induces and 
maintains cancer-related heat hyperalgesia (120). These authors 
measured levels of TNFα and other cytokines both in cell culture 
and in cancer samples from mice inoculated with lung carcinoma 
cells in the hindpaw. TNFα and IL1β within cancer samples, but 
not from the cell culture supernatants or cell lysates, were detected 
at pathophysiological concentrations. Daily systemic treatment 
with etanercept to neutralize endogenous TNFα abolished cancer-
induced heat hyperalgesia (Hargreaves test). The reduction of 
hyperalgesia was not attributable to any effect on tumor size. 
To delineate which of the two TNFα receptors (TNFR1 or TNFR2) 
might be involved in the generation of heat hyperalgesia in the 
cancer pain model, knockout of the respective receptors was engi-
neered in mice (120). TNFR1–/– cancer mice showed significant 
heat hyperalgesia, whereas TNFR2–/–  mice manifested no heat 
hyperalgesia until the very late stages of tumor development,  

suggesting that TNFR2 plays the predominant role in the genera-
tion of cancer-induced heat hyperalgesia (120).

Endogenous Mechanisms of Cancer Pain Relief

Cannabinoids have been proposed to be effective against cancer 
pain for decades (121), but their mode of action in cancer noci-
ception has only recently become clear (Figure 2). Cannabinoids 
are analgesic in patients with neuropathic pain (122–126) and are 
antinociceptive and antihyperalgesic in a variety of animal models. 
Cannabinoids also potentiate the analgesic effects of morphine and 
prevent tolerance (127, 128). Cannabinoids activate two receptor 
subtypes, cannabinoid receptors 1 and 2 (CBr1 and CBr2) (129, 
130), both of which contribute to analgesia. CBr1 is localized in 
the spinal dorsal horn, periaqueductal grey (131, 132), and dorsal 
root ganglion (124, 133). In neuropathic pain, cannabinoids act at 
central and peripheral nerve CBr1 (125, 126), and at keratinocyte 

Figure 2. Cannabinoid receptor (CBr) agonists and antagonists act peripherally in the cancer microenvironment on CBr1 and CBr2 subtypes and 
have central effects when administered systemically. CBr agonists reduce cancer-induced nociception. In the carcinoma microenvironment, CBr1 receptors 
are found on the primary afferent nociceptive free nerve endings, whereas CBr2 might be present on the carcinoma cells given that they are found on keratino-
cytes. Activation of peripheral CBr1 reduces hyperalgesia by opening G protein–coupled inwardly rectifying potassium (GIRK) channels, by inhibiting voltage-
dependent calcium channels (VDCC), and by inhibiting release of substance P (SP) and calcitonin gene–related peptide (CGRP). An additional mechanism for 
reducing cancer-induced nociception, including mechanical allodynia, comes from activation of CBr2 on the carcinoma cell, which potentially leads to secretion 
of beta-endorphins, as occurs in keratinocytes. The endorphins activate mu opioid receptors on the peripheral nociceptive afferent, which open GIRK channels. 
WIN 55,212-2 and CP 55,940 are non-selective CBr agonists. AM1241 is a selective CBr2 agonist. Selective antagonists include SR141716A for CBr1 and 
SR144528 for CBr2. The left-hand side of the figure illustrates additional sites of actions for systemic administration of agonists or antagonists of CBr1, namely 
the dorsal root ganglion cell body, the dorsal horn presynaptic terminals of the primary afferent neuron, and the brain. (See text for details and references. Blue 
arrows indicate secretion. Green arrows indicate agonism or activation. Red arrows indicate antagonism; red blunt arrows represent inhibition).
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CBr2 receptors (126, 134). Cannabinoid receptors are expressed on 
nerve terminals and keratinocytes after being synthesized in dorsal 
root ganglion (135); however, only peripheral CBr1 on nociceptors 
contribute to antinociception in inflammatory and neuropathic 
pain models (136). CBr2 is found on immune cells (130, 137) and 
keratinocytes (134, 138). CBr2 on keratinocytes mediates antinoci-
ception via opioid release, similar to the mechanisms discussed 
above for activation of the ET

B
R on keratinocytes (134, 138). CBr2 

stimulates β-endorphin release from keratinocytes, leading to anti-
nociception through µ-opioid receptors. 

Cannabinoid Receptor Agonists Reduce  
Cancer-Induced Nociception

Cannabinoid receptor agonists can reduce cancer-induced noci-
ception (as measured by grip force) in a mouse model established 
by inoculating osteolytic cells into the humeri of both forelimbs 
(139). When peak hyperalgesia was exhibited, WIN55,212-2, a 
non-selective cannabinoid agonist, was administered intraperitone-
ally, which elicited time- and dose-related antihyperalgesia. The 
WIN55,212-2–related change in behavior was confirmed to arise 
through cannabinoid receptor agonism, rather than as the result of 
catalepsy and loss of motor coordination, which are well-known 
side effects of cannabinoids. Because systemic cannabinoids act-
ing through CBr1 are antihyperalgesic in the murine fibrosarcoma 
pain model (140), various combinations of the nonselective can-
nabinoid receptor agonist CP 55,940, the CBr1 selective antago-
nist SR 141716A, and the CBr2 selective antagonist SR 144528 
were used to isolate the antihyperalgesic effect of the nonselective 
cannabinoid receptor agonist to the CB1 receptor. 

Cannabinoid-Mediated Antinociception and Opioid Release

To examine the role of peripheral cannabinoid receptors in 
 carcinoma pain, Guerrero and colleagues examined carcinoma-
induced allodynia in the oral SCC cancer pain model (10, 27, 141). 
Intra-tumor administration of either the nonselective WIN55,212-2 
or the CBr2-selective agonist AM1241 significantly elevated nocicep-
tive thresholds but functioned within distinct time frames. Both anti-
nociceptive activities, however, occurred within twenty-four hours of 
cannabinoid administration, well before any cannabinoid-associated 
effect upon tumor growth would have been manifested (141, 142).

In contrast to the carcinoma mouse model, the osteolytic fib-
rosarcoma hyperalgsesia mouse model exhibits an antinociceptive 
response to cannabinoid treatment that is solely CBr1-dependent 
(139, 141). A number of technical differences are likely responsible 
for the disparate observations. First, fibrosarcoma and squamous 
cell carcinoma are histologically distinct, and the profiles of noci-
ceptive mediators that they produce are likely different. Second, 
antinociceptive studies in the two models differed in terms of 

administration route (local vs systemic) and utilized different 
ligands to probe for cannabinoid receptor responses. 

Regardless of the differences, receptor-selective cannabinoid 
agonists show significant potential for the management of cancer 
pain without side effects, and antinociceptive effects in both recep-
tor subtype systems may be opioid-mediated (138, 141). Although 
systemic, non-selective cannabinoids produce sedation and cata-
lepsy due to CBr1 activation (139), a peripheral CBr2 agonist 
might provide relief for cancer patients without those side effects. 

The diversity of animal models of cancer pain have provided 
new and important information on the neurobiology underlying 
cancer pain. Functional interactions between cancer cells and 
peripheral nerve occur, in part, from the release of several algesic 
compounds from tumor cells, such as prostaglandins, bradyki-
nin, substance P, cytokines, and growth factors that could excite 
primary afferent nociceptors in surrounding tissues to produce 
pain (10, 11, 143, 144). In addition, recent evidence suggests that 
mechanisms of cancer pain include complex contributions from 
morphological, neurochemical, and physiological changes in both 
the peripheral and central nervous systems.

Neurochemistry, Morphology, and 
Physiology of Primary Sensory Neurons  
in Cancer Pain

In one of the first animal models of cancer pain, fibrosarcoma 
cells (NCTC 2472) derived from a spontaneous connective tissue 
tumor were implanted into the medullary cavity of the femur in 
C3H/He mice (145–147). Microdialysis revealed high levels of sub-
stance P, NGF, and interleukin-10 (IL-10) in the area of the tumor 
(148). DRG neurons become activated and sensitized in this cancer 
model, as evidenced by the internalization of substance P receptor 
in ipsilateral spinal neurons following stimulation (non-noxious 
as well as noxious) of the femur (145). Importantly, the degree of 
receptor internalization correlated with the extent of bone destruc-
tion. Internalization of substance P receptors in the spinal cord 
following peripheral stimulation has also been shown in animal 
models of inflammatory pain (149, 150). Expression of c-Fos, also 
a marker of inflammation and nociceptor activity and sensitization 
(151–154), recapitulated the substance P receptor internalization 
data and similarly correlated with the development of cancer and 
pain behavior (145). Electrophysiological studies providing direct 
evidence that nociceptors become sensitized during tumor growth 
(22) have been discussed above. 

Beyond the mechanisms that contribute to nociceptor sen-
sitization in models of bone cancer pain discussed above (e.g., 
endothelin-1), additional data are developing. Granulocyte- and 
granulocyte-macrophage colony stimulating factors and their 
receptors have been implicated (155). It has also been shown 
that a decrease in endocannabinoid signaling in primary sensory 
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neurons may also contribute to changes in nociceptor excitability 
produced by fibrosarcoma cells (156). 

Tumor growth following implantation of fibrosarcoma cells 
into the hindpaw also produces morphological changes in periph-
eral nerve fibers. Morphology of nerve fibers in the epidermis has 
been investigated because many of these fibers are nociceptors 
(157, 158). Biopsies obtained from plantar skin of mice that exhib-
ited mechanical allodynia and epidermal nerve indicate sprouting 
of epidermal nerve fibers early during tumor growth followed by 
degeneration during tumor progression. Thus, pain associated 
with this model is due, in part, to nerve injury. 

In another model of neuropathic cancer pain, Shimoyama 
and colleagues implanted Meth A sarcoma cells around the sciatic 
nerve in mice (159). Mechanical allodynia, thermal hyperalgesia 
and signs of spontaneous pain developed over several days fol-
lowing implantation. A tumor mass was present around the sciatic 
nerve but it did not infiltrate into the nerve. Histological evalua-
tion revealed progressive damage to both myelinated and unmyeli-
nated nerve fibers.

Taken together, the studies described above show that tumor 
growth alters the morphology of peripheral nerve fibers resulting in 
neuropathy and increased excitability of certain classes of nocicep-
tors. It is likely that the sensitization of nociceptors during tumor 
development results from a combination of nerve injury, release of 
inflammatory mediators, and release of algesic substances.

Central Sensitization and Cancer Pain

Mice with bone destruction and hyperalgesia produced by fib-
rosarcoma cells implanted into the femur exhibit an increase in 
dynorphin, a pro-hyperalgesic peptide (160), in neurons located in 
the deep dorsal horn in L3-L5 ipsilateral to the implanted femur, 
and the expression of dynorphin was correlated to the degree of 
bone destruction (145). An increase in dynorphin in the spinal 
cord also occurs in models of neuropathic pain and persistent 
inflammation (161–163).

Particularly interesting was the increase in labeling with glial 
fibrillary acidic protein (GFAP), a marker for astrocytes, in the 
ipsilateral spinal cords of mice with fibrosarcoma-induced cancer 
pain (145). This increase in GFAP labeling in the dorsal horn was 
likely due to hypertrophy of astrocytes and also correlated with 
the extent of bone destruction. Activation of glia in the spinal 
cord, including astrocytes, may contribute to the development or 
maintenance of persistent pain by releasing algesic substances that 
excite or sensitize nociceptive dorsal horn neurons (164). 

Although neurochemical changes in dorsal route ganglia and 
spinal cord occur with many models of persistent pain, including 
neuropathic, inflammatory, and cancer pain models, the neuro-
chemical changes, rather than being uniform, vary with the par-
ticular pain model (154). For example, dynorphin was increased 

in dorsal horn neurons in mice with hindpaw inflammation and 
bone cancer, but not nerve injury. Also, mice with bone cancer 
exhibited a much greater increase in GFAP labeling in the spinal 
cord as compared to mice with nerve injury, whereas inflammation 
of the hindpaw did not appear to increase GFAP. 

In electrophysiological studies of central sensitization, a 
model of bone cancer pain in which rat mammary gland car-
cinoma cells (MRMT-1) are implanted into the tibia of female 
rats revealed that superficial (lamina I) dorsal horn neurons had 
enlarged receptive field areas, exhibiting enhanced responses to 
innocuous and noxious mechanical and heat stimuli. There was 
also a greater percentage of cells classified as wide dynamic range 
(WDR), as opposed to nociceptive specific (NS), suggesting that 
NS neurons were sensitized and behaved functionally like WDR 
cells. Nociceptive neurons (WDR) in the deep dorsal horn also 
exhibited greater responses to electrical and heat stimuli applied to 
the receptive field as compared to controls.

Central sensitization has also been shown following implan-
tation of fibrosarcoma cells into the mouse hindpaw. WDR neu-
rons exhibited an increase in spontaneous activity, and enhanced 
responses to mechanical, heat, and cold stimuli applied to their 
receptive field (165). Although the mechanisms that mediate cen-
tral sensitization following tumor development are not clear, it has 
recently been shown that mitogen-activated protein kinases may 
be involved (166). 

Conclusion

Cancer and immune cells in the region of tumor masses release 
several neuroimmune mediators that interact with a variety of 
receptors on peripheral nociceptive nerve terminals to promote 
abnormal discharge and hyperexcitability. In addition, tumors 
growing in the vicinity of peripheral nerves can compromise the 
integrity of the nerve, inducing a neuropathic condition accompa-
nied by persistent pain, hyperalgesia, or allodynia. Both of these 
actions of tumors on peripheral nerve can result in central sen-
sitization, which can further enhance the efficacy of nociceptive 
transmission through the spinal cord dorsal horn and perception 
of spontaneous and breakthrough pain. Additional studies are 
needed to further understand the unique molecular mechanisms 
by which cancer produces sensitization and pain so that new 
pharmacological targets can be identified that will reduce or block 
tumor-evoked sensitization.  doi:10.1124/mi.10.3.7
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